总体介绍

Python 被大量应用在数据挖掘和深度学习领域,其中使用极其广泛的是 Numpy、pandas、Matplotlib、PIL 等库。

numpy是 Python 科学计算库的基础。包含了强大的 N 维数组对象和向量运算。

pandas是建立在 numpy 基础上的高效数据分析处理库,是 Python 的重要数据分析库。

Matplotlib是一个主要用于绘制二维图形的 Python 库。用途:绘图、可视化

PIL库是一个具有强大图像处理能力的第三方库。用途:图像处理

Numpy 库

NumPy 是使用 Python 进行科学计算的基础软件包。

更多学习,可参考numpy 中文网https://www.numpy.org.cn/

1. 数组创建

可以使用 array 函数从常规 Python列表或元组中创建数组。得到的数组的类型是从 Python 列表中元素的类型推导出来的。

创建数组最简单的办法就是使用 array 函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的 numpy 数组。其中,嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组

1
2
3
4
5
6
import numpy as np

#将列表转换为数组
array = np.array([[1,2,3],
[4,5,6]])
print(array)
[[1 2 3]
 [4 5 6]]
1
2
3
4
5
6
import numpy as np

#将元组转换为数组
array = np.array(((1,2,3),
(4,5,6)))
print(array)
[[1 2 3]
 [4 5 6]]

下面这样可以吗?

1
a = np.array(1,2,3,4) #不行的

通常,数组的元素最初是未知的,但它的大小是已知的。因此,NumPy 提供了几个函数来创建具有初始占位符内容的数组。

  • zeros():可以创建指定长度或者形状的全 0 数组

  • ones():可以创建指定长度或者形状的全 1 数组

  • empty():创建一个数组,其初始内容是随机的,取决于内存的状态

1
2
zeroarray = np.zeros((2,3))
print(zeroarray)
[[0. 0. 0.]
 [0. 0. 0.]]
1
2
onearray = np.ones((3,4),dtype='int64')
print(onearray)
[[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]
1
2
emptyarray = np.empty((3,4))
print(emptyarray)
[[6.95060666e-310 4.66535240e-310 0.00000000e+000 0.00000000e+000]
 [0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000]
 [0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000]]

为了创建数字组成的数组,NumPy 提供了一个类似于 range 的函数,该函数返回数组而不是列表。

1
2
array = np.arange( 10, 31, 5 )
print(array)
[10 15 20 25 30]

输出数组的一些信息,如维度、形状、元素个数、元素类型等

1
2
3
4
5
6
7
8
9
10
array = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(array)
#数组维度
print(array.ndim)
#数组形状
print(array.shape)
#数组元素个数
print(array.size)
#数组元素类型
print(array.dtype)
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]]
2
(4, 3)
12
int64

重新定义数字的形状

1
2
3
4
5
6
7
array1 = np.arange(6).reshape([2,3])
print(array1)


array2 = np.array([[1,2,3],[4,5,6]],dtype=np.int64).reshape([3,2])
print(array2)

[[0 1 2]
 [3 4 5]]
[[1 2]
 [3 4]
 [5 6]]

2. 数组的计算

数组很重要,因为它可以使我们不用编写循环即可对数据执行批量运算。这通常叫做矢量化(vectorization)。

大小相等的数组之间的任何算术运算都会将运算应用到元素级。同样,数组与标量的算术运算也会将那个标量值传播到各个元素.

矩阵的基础运算:

1
2
3
4
5
6
7
8
9
arr1 = np.array([[1,2,3],[4,5,6]])
arr2 = np.ones([2,3],dtype=np.int64)

print(arr1 + arr2)
print(arr1 - arr2)
print(arr1 * arr2)
print(arr1 / arr2)
print(arr1 ** 2)

[[2 3 4]
 [5 6 7]]
[[0 1 2]
 [3 4 5]]
[[1 2 3]
 [4 5 6]]
[[1. 2. 3.]
 [4. 5. 6.]]
[[ 1  4  9]
 [16 25 36]]

矩阵乘法:

1
2
3
4
5
6
#矩阵乘法
arr3 = np.array([[1,2,3],[4,5,6]])
arr4 = np.ones([3,2],dtype=np.int64)
print(arr3)
print(arr4)
print(np.dot(arr3,arr4))
[[1 2 3]
 [4 5 6]]
[[1 1]
 [1 1]
 [1 1]]
[[ 6  6]
 [15 15]]

矩阵的其他计算:

1
2
3
4
5
6
7
print(arr3)
print(np.sum(arr3,axis=1)) #axis=1,每一行求和 axie=0,每一列求和
print(np.max(arr3))
print(np.min(arr3))
print(np.mean(arr3))
print(np.argmax(arr3)) #取出arr3中元素最大值所对应的索引
print(np.argmin(arr3))
[[1 2 3]
 [4 5 6]]
[ 6 15]
6
1
3.5
5
0
1
2
3
4
arr3_tran = arr3.transpose()#T转置
print(arr3_tran)

print(arr3.flatten())#扁平化
[[1 4]
 [2 5]
 [3 6]]
[1 2 3 4 5 6]

3. 数组的索引与切片

1
2
3
4
5
6
7
8
arr5 = np.arange(0,6).reshape([2,3])
print(arr5)
print(arr5[1])
print(arr5[1][2])
print(arr5[1,2])
print(arr5[1,:])
print(arr5[:,1])
print(arr5[1,0:2])
[[0 1 2]
 [3 4 5]]
[3 4 5]
5
5
[3 4 5]
[1 4]
[3 4]

padas 库

pandas 是 python 第三方库,提供高性能易用数据类型和分析工具。

pandas 基于 numpy 实现,常与 numpy 和 matplotlib 一同使用

更多学习,请参考pandas 中文网https://www.pypandas.cn/

Padas 核心数据结构:

维 数 名 称 描 述
1 Series 带标签的一维同构数组
2 DataFrame 带标签的,大小可变的,二维异构表格

1. Series

Series 是一种类似于一维数组的对象,它由一维数组(各种 numpy 数据类型)以及一组与之相关的数据标签(即索引)组成.

可理解为带标签的一维数组,可存储整数、浮点数、字符串、Python 对象等类型的数据。

1
2
3
4
5
6
import pandas as pd
import numpy as np

s = pd.Series(['a','b','c','d','e'])
print(s)

0    a
1    b
2    c
3    d
4    e
dtype: object

Seris 中可以使用 index 设置索引列表。

与字典不同的是,Seris 允许索引重复

1
2
3
4
#与字典不同的是:Series允许索引重复
s = pd.Series(['a','b','c','d','e'],index=[100,200,100,400,500])
print(s)

100    a
200    b
100    c
400    d
500    e
dtype: object

Series 可以用字典实例化

1
2
d = {'b': 1, 'a': 0, 'c': 2}
pd.Series(d)
b    1
a    0
c    2
dtype: int64

可以通过 Series 的 values 和 index 属性获取其数组表示形式和索引对象

1
2
3
print(s.values)
print(s.index)

['a' 'b' 'c' 'd' 'e']
Int64Index([100, 200, 100, 400, 500], dtype='int64')
1
2
3
4
#与普通numpy数组相比,可以通过索引的方式选取Series中的单个或一组值
print(s[100])
print(s[[400, 500]])

100    a
100    c
dtype: object
400    d
500    e
dtype: object
1
2
3
4
5
6
7
8
s = pd.Series(np.array([1,2,3,4,5]), index=['a', 'b', 'c', 'd', 'e'])
print(s)

#对应元素求和
print(s+s)

#对应元素乘
print(s*3)
a    1
b    2
c    3
d    4
e    5
dtype: int64
a     2
b     4
c     6
d     8
e    10
dtype: int64
a     3
b     6
c     9
d    12
e    15
dtype: int64

Series 中最重要的一个功能是:它会在算术运算中自动对齐不同索引的数据

Series 和多维数组的主要区别在于, Series 之间的操作会自动基于标签对齐数据。因此,不用顾及执行计算操作的 Series 是否有相同的标签。

1
2
3
4
obj1 = pd.Series({"Ohio": 35000, "Oregon": 16000, "Texas": 71000, "Utah": 5000})
obj2 = pd.Series({"California": np.nan, "Ohio": 35000, "Oregon": 16000, "Texas": 71000})

print(obj1 + obj2)
California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
dtype: float64
1
2
3
4
5
6
7
s = pd.Series(np.array([1,2,3,4,5]), index=['a', 'b', 'c', 'd', 'e'])

print(s[1:])

print(s[:-1])

print(s[1:] + s[:-1])
b    2
c    3
d    4
e    5
dtype: int64
a    1
b    2
c    3
d    4
dtype: int64
a    NaN
b    4.0
c    6.0
d    8.0
e    NaN
dtype: float64

2. DataFrame

DataFrame 是一个表格型的数据结构,类似于 Excel 或 sql 表

它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)

DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共用同一个索引)

用多维数组字典、列表字典生成 DataFrame

1
2
3
4
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
frame = pd.DataFrame(data)
print(frame)

    state  year  pop
0    Ohio  2000  1.5
1    Ohio  2001  1.7
2    Ohio  2002  3.6
3  Nevada  2001  2.4
4  Nevada  2002  2.9
1
2
3
4
#如果指定了列顺序,则DataFrame的列就会按照指定顺序进行排列
frame1 = pd.DataFrame(data, columns=['year', 'state', 'pop'])
print(frame1)

   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

跟原 Series 一样,如果传入的列在数据中找不到,就会产生 NAN 值

1
2
frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five'])
print(frame2)
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

用 Series 字典或字典生成 DataFrame

1
2
3
d = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
print(pd.DataFrame(d))
   one  two
a  1.0  1.0
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0
1
2
3
#通过类似字典标记的方式或属性的方式,可以将DataFrame的列获取为一个Series,返回的Series拥有原DataFrame相同的索引

print(frame2['state'])
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
Name: state, dtype: object

列可以通过赋值的方式进行修改,例如,给那个空的“delt”列赋上一个标量值或一组值

1
2
3
frame2['debt'] = 16.5
print(frame2)

       year   state  pop  debt
one    2000    Ohio  1.5  16.5
two    2001    Ohio  1.7  16.5
three  2002    Ohio  3.6  16.5
four   2001  Nevada  2.4  16.5
five   2002  Nevada  2.9  16.5
1
2
3
print(frame2)
frame2['new'] = frame2['debt' ]* frame2['pop']
print(frame2)
       year   state  pop  debt
one    2000    Ohio  1.5  16.5
two    2001    Ohio  1.7  16.5
three  2002    Ohio  3.6  16.5
four   2001  Nevada  2.4  16.5
five   2002  Nevada  2.9  16.5
       year   state  pop  debt    new
one    2000    Ohio  1.5  16.5  24.75
two    2001    Ohio  1.7  16.5  28.05
three  2002    Ohio  3.6  16.5  59.40
four   2001  Nevada  2.4  16.5  39.60
five   2002  Nevada  2.9  16.5  47.85
1
2
frame2['debt'] = np.arange(5.)
print(frame2)
       year   state  pop  debt    new
one    2000    Ohio  1.5   0.0  24.75
two    2001    Ohio  1.7   1.0  28.05
three  2002    Ohio  3.6   2.0  59.40
four   2001  Nevada  2.4   3.0  39.60
five   2002  Nevada  2.9   4.0  47.85

PIL 库

PIL 库是一个具有强大图像处理能力的第三方库。

图像的组成:由 RGB 三原色组成,RGB 图像中,一种彩色由 R、G、B 三原色按照比例混合而成。0-255 区分不同亮度的颜色。

图像的数组表示:图像是一个由像素组成的矩阵,每个元素是一个 RGB 值

Image 是 PIL 库中代表一个图像的类(对象)

1
2
#安装pillow
#!pip install pillow

1. 展示图片,并获取图像的模式,长宽,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from PIL import Image
import matplotlib.pyplot as plt
#显示matplotlib生成的图形
%matplotlib inline

#读取图片
img = Image.open('/home/aistudio/work/lena.png')

#显示图片
#img.show() #自动调用计算机上显示图片的工具

plt.imshow(img)
plt.show(img)

#获得图像的模式
img_mode = img.mode
print(img_mode)

width,height = img.size
print(width,height)

origin_img

RGB
512 512

2. 图片旋转

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from PIL import Image
import matplotlib.pyplot as plt
#显示matplotlib生成的图形
%matplotlib inline

#读取图片
img = Image.open('/home/aistudio/work/lena.png')
#显示图片
plt.imshow(img)
plt.show(img)

#将图片旋转45度
img_rotate = img.rotate(45)
#显示旋转后的图片
plt.imshow(img_rotate)
plt.show(img_rotate)

origin_img

img_rotate

3. 图片剪切

1
2
3
4
5
6
7
8
9
10
11
12
13
14
from PIL import Image

#打开图片
img1 = Image.open('/home/aistudio/work/lena.png')

#剪切 crop()四个参数分别是:(左上角点的x坐标,左上角点的y坐标,右下角点的x坐标,右下角点的y坐标)
img1_crop_result = img1.crop((126,50,381,400))

#保存图片
img1_crop_result.save('/home/aistudio/work/lena_crop_result.jpg')

#展示图片
plt.imshow(img1_crop_result)
plt.show(img1_crop_result)

img1_crop_result

4. 图片缩放

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from PIL import Image

#打开图片
img2 = Image.open('/home/aistudio/work/lena.png')

width,height = img2.size

#缩放
img2_resize_result = img2.resize((int(width*0.6),int(height*0.6)),Image.ANTIALIAS)

print(img2_resize_result.size)

#保存图片
img2_resize_result.save('/home/aistudio/work/lena_resize_result.jpg')

#展示图片
plt.imshow(img2_resize_result)
plt.show(img2_resize_result)
(307, 307)

img2_resize_result

5. 镜像效果:左右旋转、上下旋转

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from PIL import Image

#打开图片
img3 = Image.open('/home/aistudio/work/lena.png')

#左右镜像
img3_lr = img3.transpose(Image.FLIP_LEFT_RIGHT)

#展示左右镜像图片
plt.imshow(img3_lr)
plt.show(img3_lr)

#上下镜像
img3_bt = img3.transpose(Image.FLIP_TOP_BOTTOM)

#展示上下镜像图片
plt.imshow(img3_bt)
plt.show(img3_bt)

img3_lr

img3_bt

Matplotlib 库

Matplotlib 库由各种可视化类构成,内部结构复杂。

matplotlib.pylot 是绘制各类可视化图形的命令字库

更多学习,可参考Matplotlib 中文网https://www.matplotlib.org.cn

1
#!pip install matplotlib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import matplotlib.pyplot as plt
import numpy as np

#显示matplotlib生成的图形
%matplotlib inline
'''
语法:numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
参数含义:
start:返回样本数据开始点
stop:返回样本数据结束点
num:生成的样本数据量,默认为50
endpoint:True则包含stop;False则不包含stop
retstep:If True, return (samples, step), where step is the spacing between samples.(即如果为True则结果会给出数据间隔)
dtype:输出数组类型
axis:0(默认)或-1
'''
x = np.linspace(-1,1,50) #等差数列
y = 2*x + 1

#传入x,y,通过plot()绘制出折线图
plt.plot(x,y)

#显示图形
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50) #等差数列
y1 = 2*x + 1
y2 = x**2

plt.figure()
plt.plot(x,y1)

plt.figure(figsize=(8,5))
plt.plot(x,y2)

plt.show()

1
2
3
4
5
6
7
8
9
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(7,5))
plt.plot(x,y1,color='red',linewidth=1)
plt.plot(x,y2,color='blue',linewidth=5)
plt.xlabel('x',fontsize=20)
plt.ylabel('y',fontsize=20)
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(7,5))
l1, = plt.plot(x,y1,color='red',linewidth=1)
l2, = plt.plot(x,y2,color='blue',linewidth=5)
plt.legend(handles=[l1,l2],labels=['aa','bb'],loc='best') #图例
plt.xlabel('x')
plt.ylabel('y')
# plt.xlim((0,1)) #x轴只截取一段进行显示
# plt.ylim((0,1)) #y轴只截取一段进行显示
plt.show()

1
2
3
4
5
6
7
# dots1 = np.array([2,3,4,5,6])
# dots2 = np.array([2,3,4,5,6])
dots1 =np.random.rand(50)
dots2 =np.random.rand(50)
plt.scatter(dots1,dots2,c='red',alpha=0.5) #散点图,c表示颜色,alpha表示透明度
plt.show()

1
2
3
4
x = np.arange(10)
y = 2**x+10
plt.bar(x,y,facecolor='blue',edgecolor='white') #直方图
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
'''
zip 语法:zip([iterable, ...])
参数说明:iterabl -- 一个或多个迭代器;
返回值: 返回zip对象,可用list转元组列表。
'''
#example
l = ['a', 'b', 'c', 'd', 'e','f']
print (l)
print(zip(l[:-1],l[1:]))

#打印列表
print(list(zip(l[:-1],l[1:])))

nums = ['flower','flow','flight']
for i in zip(*nums):
print(i) # 元素个数与最短的元素一致
['a', 'b', 'c', 'd', 'e', 'f']
<zip object at 0x7ff2d4680050>
[('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e'), ('e', 'f')]
('f', 'f', 'f')
('l', 'l', 'l')
('o', 'o', 'i')
('w', 'w', 'g')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
x = np.arange(10)
y = 2**x+10
print(x,y,sep='\n')
plt.bar(x,y,facecolor='blue',edgecolor='white')
for ax,ay in zip(x,y):
plt.text(ax,ay,'%.1f' % ay,va='bottom',ha='center') #用于设置文字说明
'''
简要语法:plt.text(x,y,string,fontsize=15,verticalalignment="top",horizontalalignment="right")
参数说明:
x,y:表示坐标值上的值
string:表示说明文字
fontsize:表示字体大小
verticalalignment(va):垂直对齐方式 ,参数:[ ‘center’ | ‘top’ | ‘bottom’ | ‘baseline’ ]
horizontalalignment(ha):水平对齐方式 ,参数:[ ‘center’ | ‘right’ | ‘left’ ]
'''
plt.show()
[0 1 2 3 4 5 6 7 8 9]
[ 11  12  14  18  26  42  74 138 266 522]