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Abstract
Cross‐modality person re‐identification is a challenging task due to the large visual
appearance difference between RGB and infrared images. Existing studies mainly focus
on learning local features and ignore the correlation between local features. In this paper,
the Integration Graph Attention Network is proposed to learn the completed correlation
between local features via the graph structure. To this end, the authors learn the coarse‐
fine attention weights to aggregate the local features by considering local detail and global
information. Furthermore, the Multi‐Centre Constrained Loss is proposed to optimise
the feature similarity by constraining the centres of modality and identity. It simulta-
neously utilises three kinds of centre constraints, that is intra‐identity centre constraint,
modality centre constraint, and inter‐identity centre constraint, in order to reduce the
influence of modality information explicitly. The proposed method is evaluated on two
standard benchmark datasets, that is SYSU‐MM01 and RegDB, and the results demon-
strate that the authors’ method achieves better performance than the state‐of‐the‐art
methods, for example, surpassing NFS by 4.8% and 6.0% mAP on the single‐shot
setting in All‐search and Indoor‐search modes, respectively.

1 | INTRODUCTION

Person re‐identification (Re‐ID) is an important task, which
aims to match the same pedestrian across different cameras
[1–3]. This task can be applied to many practical application
fields such as video surveillance, intelligent traffic supervision
etc. With the development of deep learning, person Re‐ID
methods have made a great progress in recent years, and
most of them are designed for processing RGB images
captured by visible cameras [4–7]. However, visible cameras are
difficult to capture discriminative appearance information un-
der poor illumination condition. Hence, single modality person
Re‐ID methods cannot work well in the night scenario.

Compared with RGB images, infrared (IR) images could
provide more appearance information under poor illumination
condition, and therefore cross‐modality person Re‐ID is natu-
rally proposed to apply RGB and IR images, simultaneously.

The visual appearance difference between RGB and IR images
is the main challenge for cross‐modality person Re‐ID, because
IR images with one channel only contain the information of
invisible electromagnetic radiation while three‐channel RGB
images include rich colour information of visible light.
Furthermore, cross‐modality person Re‐ID inherits the chal-
lenges of single modality person Re‐ID, such as the variations in
poses and viewpoints. In a word, cross‐modality person Re‐ID
is more challenging than single modality person Re‐ID.

To address the above‐mentioned issues, the existing cross‐
modality person Re‐ID methods mainly focus on feature
learning and metric learning. As for the feature learning, some
methods design one‐stream or two‐stream networks to extract
global features from RGB and IR images [8, 9, 11, 42].
Furthermore, modality‐consistent features or images are usu-
ally learnt to reduce the modality gap, which is generated by
various modality transformations, such as GAN, convolution
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operation, grayscale transformation and so on [13‐17, 44].
Meanwhile, local features of pedestrian are utilised to explore
the invariant body shape information for cross‐modality per-
son Re‐ID [10, 18, 45]. However, these methods only extract
local features from a single region and ignore the correlation
between other features, which is difficult to learn comple-
mentary information between local features.

As for the metric learning, it is applied to reduce the
appearance difference between RGB and IR images from the
aspect of feature similarity optimisation. The cross‐modality
triplet loss, the hetero‐centre loss and the contrastive loss
are proposed to control the distance between cross‐modality
features [9, 10, 42]. Some methods map heterogeneous fea-
tures into a common space so as to learn modality‐shared
metrics [19, 20]. However, these methods mix the modality
information and the identity information of features in the
process of metric learning, and they do not explicitly consider
the influence of the modality information. Hence, the learnt
metric functions are suboptimal for cross‐modality person
Re‐ID.

To overcome the above‐mentioned limitations, we propose
a novel method named Integration Graph Attention Network
(IGAT) for cross‐modality person Re‐ID, where IGAT is
designed to learn the correlation between local features via the
graph structure. To this end, we first extract the local features
of pedestrian images and treat them as the nodes of graph. In
order to model the completed correlation, we not only learn
the correlation between local features, but also integrate the
global correlation into the feature representation via learning
the coarse‐fine attention weights. Then, we apply the coarse‐
fine attention weights to aggregate the local features from
the corresponding parts with the same modality. As a result,
local detail and global information are injected into the final
representation so as to obtain the complementary information.

Furthermore, to relieve the influence of modality infor-
mation, we propose the Multi‐Centre Constrained Loss
(MCCL) to optimise the similarity between pedestrian images
by constraining the centres of modality and identity. Specif-
ically, as shown in Figure 1, MCCL consists of three compo-
nents: 1) Intra‐identity centre constraint: to increase the feature
similarity between pedestrian images with the same identity, we
directly pull the centres with the same identity from different
modalities together. 2) Modality centre constraint: we also pull
the centres of different modalities together to reduce the
feature discrepancy caused by cross modality. 3) Inter‐identity
centre constraint: the centres of different identities are
encouraged to be away from each other. It could improve the
feature dissimilarity between pedestrian images from different
identities in order to obtain discriminative features. In a word,
the proposed MCCL explicitly reduces the influence of mo-
dality information by constraining different kinds of centres.

The main contributions of this work are summarised as
follows:

1) We propose IGAT to obtain the completed correlation
between local features by learning the coarse‐fine attention
weights.

2) We propose MCCL to optimise the similarity between
pedestrian images from different aspects by constraining
different kinds of centres.

3) Extensive experimental results on the SYSU‐MM01 and
RegDB datasets show our method surpasses the state‐of‐
the‐art methods, which demonstrate the effectiveness of
our method.

2 | RELATED WORK

2.1 | Cross‐modality person Re‐ID

In order to overcome the visual appearance difference between
RGB and IR modalities, many approaches have been proposed
to learn discriminative features for cross‐modality person Re‐
ID [8, 21, 22]. Some of them design the specific network
structures to obtain global features [8, 11]. For example, Ye
et al. [11] present a two‐stream network with non‐local
attention to extract global features. Some methods employ
the generator module to generate modality alignment infor-
mation [12, 16, 26]. Wang et al. [26] apply AlignGAN to
transform real RGB images to fake IR images in order to
obtain alignment features.

Furthermore, local features are introduced into cross‐
modality person Re‐ID to extract the invariant body shape
information from the pedestrian images of different modalities
[18, 45]. Sun et al. [23] propose a whole‐individual training
(WIT) model to learn local features for VI‐ReID, which is
based on the idea of pulling the whole images and dis-
tinguishing the individuals. Ye et al. [18] exploit the intra‐
modality part relationship to enhance the feature representa-
tion. However, these local feature‐based methods for cross‐
modality person Re‐ID only learn the local information or
their correlation, which results in learning incomplete corre-
lation in the aggregation process. Different from the above

F I GURE 1 The illustration of Multi‐Centre Constrained Loss. The top
row and the bottom row are the schematic diagram before and after using
the constraints, respectively. The points with the same shape denote the
features belonging to the same identity, and the points with the same colour
indicate the features belonging to the same modality
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methods, the proposed IGAT learns the completed correlation
between local features, where the local and global features are
both considered in the aggregation process.

In order to learn the accurate similarity measurement
between cross‐modality features, some methods reduce the
modality gap by means of metric learning. Chen et al. [42]
employ the contrastive loss, and Ye et al. [9] adopt the
cross‐modality triplet loss to optimise the deep networks,
which is beneficial to extract modality‐invariant features.
Hao et al. [20] map the pedestrian images from two do-
mains into a hypersphere and constrain the cross‐modality
variations by the hypersphere. Zhu et al. [10] propose the
hetero‐centre loss to reduce the intra‐identity cross‐modality
variations by constraining the centres. Although these
centre‐based losses achieve promising results, they only
consider one kind of centre constraint, which is difficult to
handle the complex distributions of heterogeneous features.
Different from them, the proposed MCCL considers three
kinds of centre constraints of modality and identity so as to
simultaneously reduce the intra‐identity cross‐modality vari-
ations and inter‐modality variations, and increase the inter‐
identity variations.

2.2 | Graph Attention Network

Graph Attention Network (GAT) [29] remits the prior
knowledge of graph structure from Graph Neural Network
(GNN) [27, 28] and integrates the attention architecture into
GNN. It assigns different weights to neighbour nodes for
propagating information to centre nodes via masked self‐
attentional layers.

Recently, GAT has been applied into various tasks to
exploit the dependency between nodes [30, 31]. Huang et al.
[32] propose the target‐dependent GAT to utilise dependency
relationship among words for aspect level sentiment classifi-
cation. Wang et al. [33] propose the relational GAT to encode
syntax information for sentiment prediction. Yang et al. [25]
propose HGAT based on a dual‐level attention mechanism for
short text classification. Chen et al. [24] exploit heterogeneous
graph and node features to learn user profiles from limited
labelled data.

As for the field of person Re‐ID, Zhang et al. [37] present
Heterogeneous Local Graph Attention Networks (HLGAT) to
model the inter‐local relation and the intra‐local relation for
person Re‐ID. However, HLGAT ignores the aggregation of
global information in the learning process of the local features.
Different from HLGAT, the proposed IGAT models the de-
pendency between local features from the local and global
aspects.

3 | APPROACH

The framework of the proposed method is shown in Figure 2.
It mainly consists of the Feature Extractor Module, the IGAT
Module and MCCL. We detail each component in this section.

3.1 | Feature Extractor Module

The Feature Extractor Module is designed based on a two‐
stream network, which adopts ResNet‐50 [34] as the back-
bone. Specifically, we adopt two individual ResNet‐50, which
are removed the last down‐sampling operation for two mo-
dality streams. In each modality stream, the feature maps
outputted from the last convolution layer are conducted by the
average pooling. Meanwhile, the feature maps are divided into
P uniform parts horizontally and then implemented by the
average pooling for each part. Finally, a weight‐shared fully
connected (FC) layer is employed by the two modality streams
to obtain the local features f p

Lj
P
p¼1 and the global feature fG.

3.2 | IGAT module

The local features have been demonstrated the effectiveness to
viewpoint and posture changes [35–37]. Furthermore, the local
features corresponding to the same part describe the pedes-
trian from different aspects, and therefore learning the corre-
lation between local features could propagate useful
information between them. As a result, the discrimination of
local features is improved. Motivated by this, we design IGAT
to model the completed correlation for local features.

The IGAT Module is connected after the Feature
Extractor Module, and the local features f p

Lj
P
p¼1 and the global

feature fG are the input of the IGAT Module. We utilise the
local features to construct a graph where each local feature is
treated as a node. Each node is updated by its neighbour nodes
with the aggregation operation. The node after updating is
formulated as:

~f p;i
L ¼ σ

0

@f p;i
L þ

X

j∈Ni

αij
pVpf

p;j
L

1

A ð1Þ

where f p;i
L and f p;j

L are the p‐th local features of the i‐th and j‐th
pedestrian images respectively, Vp indicates the learnable
transformation matrix for the p‐th local feature, σ(⋅) denotes
the non‐linear transformation implemented by the LeakyReLU
operation, and Ni is the neighbour node set of i, which con-
tains the nodes with the same modality of the i‐th pedestrian
image. Here, αij

p is the attention weight, which reflects the
correlation between the p‐th local features of the i‐th and j‐th
pedestrian images. It is usually formulated as [18]:

αij
p ¼

exp
�

σ
�

ϕ
�
Wpf

p;i
L ;Wpf

p;j
L

���

P
k∈Ni

exp
�

σ
�

ϕ
�
Wpf

p;i
L ;Wpf

p;k
L

��� ð2Þ

where ϕ denotes the cosine similarity function, and Wp rep-
resents the learnable transformation matrix for the p‐th local
feature.

From Equations (1) and (2), we can see that it only
considers the correlation from the local aspect, and it may
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obtain some unexpected attention weights without consid-
ering global information. Figure 3 shows some local regions
of RGB and IR images. From Figure 3a we can see that I1
and I3 are with the same identity, and I1 and I2 possess
different identities. But the similarity between the local re-
gions of I1 and I2 is higher than that of I1 and I3. Meanwhile,
from the aspect of whole images, we can distinguish that I1
and I3 have the same identity, which is opposite to the
judgement from the local aspect. We can draw the similar
conclusion from IR images in Figure 3b.

Based on the observation of Figure 3, we inject the global
information when learning the correlation between local fea-
tures. We expect to utilise the global feature similarity to cor-
rect the mismatching caused by only considering the local
similarity. Hence, we propose the coarse‐fine attention weights
to consider the similarity between local features and the sim-
ilarity between global features. The coarse‐fine attention weight
between the p‐th local features of the i‐th and j‐th pedestrian
images is defined as:

αij
p ¼

~αij
p

P
k∈Ni

~αik
p

ð3Þ

~αij
p ¼ exp

�
σ
�

ϕ
�
Wpf

p;i
L ;Wpf

p;j
L

�
þ λϕ

�
WGf

i
G;WGf

j
G

���

ð4Þ

where WG is the learnable transformation matrix for the global
feature, λ is the balance parameter, and f i

G and f j
G indicate the

global features of the i‐th and j‐th pedestrian images, respec-
tively. Afterwards, we substitute Equation (3) into Equation (1)
to obtain the aggregated local features.

We employ the cross‐entropy (CE) loss to supervise the
learning process of IGAT:

LIGAT
id ¼

XP

p¼1
Lp
id ð5Þ

where Lp
id is the CE loss for the p‐th aggregated local feature.

3.3 | Multi‐centre constrained loss

In the field of cross‐modality person Re‐ID, it is common that
the similarity between RGB and IR images with the same
identity is not high enough to distinguish because of the

F I GURE 2 The framework of the proposed method. It contains two modules, that is, Feature Extractor Module and IGAT Module. The Feature Extractor
Module treats ResNet‐50 as the backbone and extracts the local features f pL and the global feature fG from RGB and infrared images. The IGAT Module learns
the completed correlation based on the local similarity and the global similarity using the coarse‐fine attention weights. Furthermore, we propose Multi‐Centre
Constrained Loss to optimise the network via constraining three kinds of centres of modality and identity. IGAT, Integration Graph Attention Network

F I GURE 3 The similarity between some local regions
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influence of heterogeneous modalities. The metric learning is
effective to reduce the modality gap; however, the existing
metric learning methods for cross‐modality Re‐ID do not
explicitly handle the influence of modality information.

Hence, we propose MCCL to simultaneously consider the
influence of modality information and identity information by
constraining multiple centres of modality and identity. Specif-
ically, MCCL includes three kinds of centre constraints in order
to achieve comprehensive similarity optimisation. First, we
apply the intra‐identity centre constraint to pull the centres
with the same identity from different modalities together in
order to increase the similarity of cross modality features with
the same identity [10]. It is defined as:

Lp
tra ¼

XN

i¼1
kcp;iR − cp;iI k

2
2 ð6Þ

where N denotes the number of identities, ‖⋅‖2 denotes the
Euclidean distance, and cp;iR and cp;iI are the centres (mean
vectors) of the p‐th local features for the i‐th identity of RGB
images and IR images, respectively.

In order to further reduce the modality gap, we propose
the modality centre constraint from the macro perspective. The
modality centre constraint is expected to pull the centres of
two modalities together, which is convenient to transform the
heterogeneous features into the homogeneous features. It is
defined as:

Lp
m ¼ kc

p
R − cpIk

2
2 ð7Þ

where cpR and cpI are the centres of the p‐th local features of all
RGB and IR images, respectively. Different from computing
multiple centres for the p‐th local features in the intra‐identity
centre constraint, the modality centre constraint only requires
to compute one centre for each modality.

Finally, we propose the inter‐identity centre constraint to
push the centres of different identities away so as to increase
the differentiation of features. The intra‐identity centre
constraint and the modality centre constraint mainly focus on
improving the similarity between the pedestrian images of
cross modality. As a complement, the inter‐identity centre
constraint is designed to increase the dissimilarity between the
pedestrian images with different identities. We define two kinds
of forms for the inter‐identity centre constraint, and as shown
in Figure 4a the first one is:

~L
p
ter ¼

X

i;j
max

�
rp;i þ rp;j − di;j

p ; 0
�

ð8Þ

where rp,i is the maximum of all distances between the centre
and the features for the p‐th local features of i‐th identity, so is
rp,j for the j‐th identity. Here, the margin di;j

p is the Euclidean
distance between the centres of the i‐th identity and the j‐th
identity for the p‐th local features.

Furthermore, we narrow the margin in Equation (8) as
shown in Figure 4b and then obtain another form of inter‐
identity centre constraint:

Lp
ter ¼

X

i;j
max

�
max

�
rp;i; rp;j

�
− di;j

p ; 0
�

ð9Þ

Equation (9) relaxes the margin restriction and it does not
introduce any extra parameters.

Figure 5 shows the loss trend of ~Lter and Lter in the training
process, where we can see that Lter has faster convergence
speed than ~Lter . Meanwhile, in the ablation study, we conduct
experiments to validate that Lter is more effective than ~Lter. In
a word, the proposed MCCL for local features is defined as:

Lp
MCC_L ¼ β1L

p
tra þ β2L

p
m þ β3L

p
ter ð10Þ

where β1, β2 and β3 are the weight parameters. We not only
adopt MCCL on the local features using Equation (10) but also
on the global features denoted as LMCC_G. Hence, MCCL on
the local and global features is formulated as:

LMCC ¼
XP

p¼1
Lp
MCC_L þ LMCC_G ð11Þ

3.4 | Optimisation

To optimise the proposed framework in an end‐to‐end way, the
overall loss is defined as:

Loss¼ μ1L
IGAT
id þ μ2L

T
id þ μ3LMCC ð12Þ

F I GURE 4 The schematic diagram of the inter‐identity centre
constraint. The points with the same shape denote the features belonging to
the same identity, and the yellow points and the green points indicate the
features belonging to RGB and infrared images, respectively. The red circles
represent the centres
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where μ1, μ2 and μ3 are the parameters to control the weights
of different components. Here, LT

id denotes the sum of CE
losses for the local features and the global features in the
Feature Extractor Module. Finally, the result obtained by
calculating Equation (12) is back‐propagated to the model so
as to optimise the model.

4 | EXPERIMENTS

4.1 | Datasets

SYSU‐MM01 [8] is a large‐scale cross‐modality person Re‐ID
dataset, which contains 301/3010 (single‐shot/multi‐shot)
RGB images and 3803 IR images of 96 identities in the test set,
and 22,258 RGB images and 11,909 IR images of 391 identities
in the training set.

RegDB cross‐modality person Re‐ID dataset [38] includes
8240 images of 412 identities. Each identity has 10 RGB images
and 10 IR images. Two hundred and six identities are randomly
selected from all 412 identities to construct the training set, and
the remaining identities constitute the test set. RegDB provides
two types of evaluation modes according to different modality
match settings. One is Visible to Thermal (V‐T ), which
searches RGB images of the same identity from IR images, and
the other one is Thermal to Visible (T‐V ), which queries IR
images of the same identity from RGB images.

4.2 | Implementation details

All the pedestrian images are resized to 288 � 144 and
augmented by the random horizontal flipping and the random
cropping. The batch size is set to 64, which contains four
identities and each identity carries eight RGB images and eight
IR images. The weight‐shared FC layer in the Feature Extractor
Module reduces the dimension of both the local features and
the global features from 2048 to 512. The number of the local
features P is set to 6. Besides, we set the balance parameter λ in
Equation (4) to 0.2. The weights of MCCL β1, β2 and β3 in
Equation (10) are set to 1, 0.5, and 0.5, respectively. The

weights of different losses μ1, μ2 and μ3 in Equation (12) are
set to 0.1, 1, and 0.5, respectively. To enhance the stability of
graph learning, we adopt the multi‐head attention strategy [29]
in IGAT, and the number of multi‐head is set to 4.

The proposed network is optimised by the stochastic
gradient descent (SGD) scheme [46]. The number of epochs is
set to 60 in the training process. The initial learning rate is set
to 0.01 and lasted for 30 epochs. Afterwards, the learning rate
is changed to 0.001 for the remaining epochs.

4.3 | Ablation study

In this subsection, we design the ablation study to validate the
effectiveness of each component of our method. We choose
the most challenging single‐shot setting on SYSU‐MM01 and
the V‐T mode on RegDB to evaluate the performance. The
results of ablation study are shown in Table 1. BS refers to the
baseline, which adopts the Feature Extractor Module super-
vised by the CE losses. BS + GAT indicates that modelling the
local correlation without considering the similarity between the
global features, and its attention weights are computed by
Equation (2).

For SYSU‐MM01, it is obvious that the performance of
our method (Ours) achieves the best results and the following
conclusions can be drawn.

Effectiveness of IGAT. The performance of BS + GAT
surpasses BS by 2.2% rank‐1 accuracy and 2.4% mAP, which
illustrates the importance of learning the correlation between
local features. The performance of BS + IGAT further brings
2.3% and 1.7% increments on rank‐1 accuracy and mAP
compared with BS + GAT. It is because the proposed IGAT
models the dependency between local features from the local
and global aspects. Specifically, the IGAT module not only
considers the correlation between local features but also injects
global information when learning the correlation so as to
obtain more precise attention weights, namely, the coarse‐fine
attention weights. Meanwhile, it further proves the effective-
ness of adding global information to attention weights of the
local features.

Effectiveness of MCCL. The performance of BS + Ltra,
BS + Lm, BS + Lter and BS+~Lter all achieves better than that of
BS due to adding different centre constraints. Afterwards, the
performance further gains by using two or three different kinds
of centre constraints. Hence, each component in MCCL
prompts the network to obtain higher performance, which
demonstrates the effectiveness of MCCL.

Effectiveness of the margin for the inter‐identity
centre constraint. As shown in Figure 5, we can see that
the loss curve of Equation (9) is smoother and faster than
Equation (8) because Equation (9) relaxes the margin restric-
tion, which makes convergence in the training process more
stable. Furthermore, in Table 1, BS + Lter improves Rank‐1
and mAP compared with BS + ~Lter and so does
BS + MCCL compared with BS + Ltra + Lm+~Lter. It can be
concluded that narrowing the margin of inter‐identity, that is
Equation (9) is more effective.

F I GURE 5 The loss trend of Lter and ~Lter in the training process
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Through the above analysis, we can further prove the
effectiveness of our proposed method, namely, the proposed
IGAT learns completed correlation between local features by
considering both local detail and global information and the
proposed MCCL constrains the centres of modality and
identity to optimise the similarity of features so as to explicitly
overcome the influence of modality information. Note that as
for the RegDB dataset, we can obtain the similar conclusions
mentioned above.

4.4 | Comparison with the state‐of‐the‐art
methods

In this subsection, we compare our method with the state‐of‐
the‐art methods on two standard benchmark datasets, that is,
SYSU‐MM01 and RegDB, to verify the effectiveness of our
method. The compared results are listed in Table 2 and Ta-
ble 3, and these compared methods are mainly classified into
three categories: 1) Zero‐Padding [8] uses the one‐stream
structure for feature extraction, 2) some methods (TONE
[19], BDTR [9], D‐HSME [20], MAC [39], MSR [40], JSIA‐
ReID [14], DAPR [41], AGW [11], CMAlign [49] and NFS
[42]) adopt the two‐stream structure for feature extraction, and
3) some methods (cmGAN [12], D2RL [13], AlignGAN [26],
Xmodal [16] and Hi‐CMD [15]) employ the specific way for
image generation. Furthermore, some methods adopt local
features for cross‐modality person ReID, that is, DDAG [18],
TSLFN + HC [10] and FBP‐AL [50].

Results on SYSU‐MM01. As shown in Table 2, in SYSU‐
MM01, our method achieves 60.6% rank‐1 accuracy and 60.3%
mAP under the single‐shot setting, and 65.5% rank‐1 accuracy
and 53.8% mAP under the multi‐shot setting, which out-
performs the compared state‐of‐the‐art methods. For the three
methods (DDAG [18], TSLFN + HC [10] and FBP‐AL [50])
using local features, DDAG mines intra‐modality part‐level

context cues using local features and FBP‐AL learns more
fine‐grained information by part representations, while our
method learns the correlation between local features from the
local and global aspects. TSLFN + HC adopts the intra‐
identity centre constraint to reduce the modality gap, while
our method simultaneously utilises three different kinds of
centre constraints. Hence, the performance of our method is
better than other local feature learning methods.

Results on RegDB. From Table 3, it can be seen that our
method achieves 84.1% rank‐1 accuracy and 75.4% mAP in
the V‐T mode and 83.1% rank‐1 accuracy and 76.0% mAP in
the T‐V mode, which exceeds the second best method by a
large margin. It demonstrates that our method possesses high
generalisation ability to different cross‐modality person Re‐ID
datasets.

Recently, MPANet [48] modifies the network backbone to
build a new baseline where they propose to embed the atten-
tion mechanisms into the ResNet50 network and utilises
mutual learning to enable different modalities to interact with
each other. It achieves the state‐of‐the‐art performance for
cross‐modality person Re‐ID. While our method does not
change the backbone and only utilises the original ResNet50
network. Furthermore, it does not focus on the interaction of
two modality streams. GLMC [47] applies the cross‐entropy
loss and the triplet loss to supervise the whole global
branch, where they treat cross‐modality person Re‐ID as a
classification task and a rank task, and focusses on learning the
global and local features of pedestrians. Compared to Ref. [47],
we only treat cross‐modality person Re‐ID as a classification
task.

Since building the correlations among pedestrian features
is beneficial for learning completed information, we focus on
the learning of the correlations of pedestrian features. To this
end, we propose IGAT to consider the correlation between
local features via the graph structure. The IGAT module
injects global information when learning the correlation be-
tween local features so as to obtain more precise attention
weights, namely, the coarse‐fine attention weights. Moreover,
we propose MCCL to optimise the similarity between
pedestrian images from different aspects by constraining
different kinds of centres, so as to reduce the discrepancies
among different modalities and make the features with the
same identity compact and the features with the different
identity far away.

4.5 | Parameter analysis

In this subsection, we conduct a series of experiments to study
the influence of several key parameters for the proposed
method including the balance parameter of local detail and
global information λ in Equation (4), the weights of three
components in MCCL β1, β2 and β3 in Equation (10), and the
weights of different losses μ1, μ2 and μ3 in Equation (12). The
experiments are conducted under the single‐shot setting on
SYSU‐MM01. The experimental results can be generalised to
multi‐shot settings of SYSU‐MM01 and RegDB.

TABLE 1 Ablation study on SYSU‐MM01 and RegDB

Methods

SYSU‐MM01 RegDB

R1 mAP R1 mAP

BS 46.8 46.1 60.5 58.1

BS + GAT 49.0 48.5 63.5 59.7

BS + IGAT 51.3 50.2 66.7 61.8

BS + Ltra 56.3 54.8 80.1 72.2

BS + Lm 52.3 51.2 65.7 64.6

BS + Lter 51.2 51.8 63.0 62.9

BS + ~Lter 49.8 48.5 61.8 59.2

BS + Ltra + Lm 58.2 57.9 81.5 73.5

BS + Ltra + Lm + ~Lter 58.4 57.7 81.8 73.7

BS + MCCL 59.5 59.4 83.0 75.1

Ours 60.6 60.3 84.1 75.4

Note: R1 denotes Rank‐1 accuracy (%).
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The weight parameter λ controls global information in the
aggregation process of local features. As shown in Figure 6, we
show that the accuracy varies with the balance parameter λ. On
the one hand, when λ gradually increases, we can see that the
performance improves, which indicates that global information
aggregation is beneficial for the local feature attention weights.
On the other hand, we can see that the performance decreases
when λ is larger than 0.2, which indicates that too much global
information for the aggregation of local features appears the
error interference phenomenon. In a word, introducing too
much global information and little global information cannot
offer the accurate completed correlation, which leads to a
suboptimal performance. Thus, we obtain the best results
when λ is set to 0.2.

As shown in Figure 7 and Figure 8, for β1, β2 and β3 in
Equation (10) we fix two parameters to the optimal values and
investigate the impact of the remaining one for the conve-
nience of display. We also apply the same method to investigate
the impact of μ1, μ2 and μ3 in Equation (12) as shown in

Table 4. When β1, β2 and β3 are set to 1, 0.5 and 0.5 respec-
tively, the performance of the network achieves the best. The
optimal values of μ1, μ2 and μ3 are 0.1, 1 and 0.5, respectively.

4.6 | Visualisation

In this subsection, we first visualise the similarity score of
RGB‐IR positive and negative pairs as shown in Figure 9. The
difference between the distributions of RGB‐IR positive and
negative pairs for BS + IGAT is larger than that of BS, and
therefore the correct matching is more probably to occur. It
demonstrates that IGAT is beneficial to learn discriminative
features.

We also report t‐SNE [43] visualisation of 10 randomly
selected identities on RegDB. The feature distributions of BS,
BS + Ltra and BS + MCCL are shown in Figure 10. Comparing
BS + Ltra with BS, we can see that the modality gap is alleviated
largely. After adding the modality centre constraint and the

TABLE 2 Comparison on SYSU‐MM01

All‐search Indoor‐search

Single‐shot Multi‐shot Single‐shot Multi‐shot

Methods Venue R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

Zero‐padding [8] ICCV’17 14.8 54.1 71.3 15.9 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6

TONE [19] AAAI’18 14.3 53.2 69.2 16.2 – – – – 24.52 73.25 86.73 30.08 – – – –

BDTR [9] IJCAI’18 17.0 55.4 72.0 19.7 – – – – – – – – – – – –

cmGAN [12] IJCAI’18 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 80.9 92.1 32.8

D‐HSME [20] AAAI’19 20.7 62.8 78.0 23.2 – – – – – – – – – – – –

D2RL [13] ICCV’19 28.9 70.6 82.4 29.2 – – – – – – – – – – – –

MAC [39] MM’19 33.3 79.0 90.9 36.2 – – – – 36.4 62.3 71.6 37.0 – – – –

AlignGAN [26] ICCV’19 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

Hi‐CMD [15] CVPR’20 34.9 77.6 – 35.9 – – – – – – – – – – – –

MSR [40] TIP’20 37.4 83.4 93.3 38.1 43.9 86.9 95.7 30.5 39.6 89.3 97.7 50.9 46.6 93.6 98.8 40.1

JSIA‐ReID [14] AAAI’20 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7

Xmodal [16] AAAI’20 49.9 89.8 96.0 50.7 – – – – – – – – – – – –

DAPR [41] IVC’21 46.0 87.9 96.0 43.9 47.7 89.9 96.6 34.5 46.2 89.2 96.7 55.8 51.4 92.9 98.5 44.1

AGW [11] TPAMI’21 47.5 84.4 92.1 47.7 54.6 90.2 96.2 41.8 54.2 91.1 96.0 63.0 61.2 92.9 97.6 53.8

CMAlign [49] ICCV’21 55.4 – – 54.1 – – – – 58.5 – – 66.3 – – – –

NFS [42] CVPR’21 56.9 91.3 96.5 55.5 63.5 94.2 97.8 48.6 62.8 96.5 99.1 69.8 70.3 97.7 99.5 61.5

GLMC* [47] TNNLS’21 64.4 93.9 97.5 63.4 66.7 95.9 98.6 54.4 67.4 98.1 99.8 74.0 77.5 97.7 99.6 67.2

MPANet‡ [48] CVPR’21 70.6 96.2 98.8 68.2 75.6 97.9 99.4 62.9 76.7 98.2 99.6 81.0 84.2 99.7 99.9 75.1

DDAG [18] ECCV’20 54.8 90.4 95.8 53.0 – – – – 61.0 94.1 98.4 68.0 – – – –

TSLFN + HC [10] Neurocomputing’20 57.0 91.5 96.8 55.0 62.1 93.7 97.9 48.0 59.7 92.1 96.2 65.0 69.8 95.9 98.0 57.9

FBP‐AL [50] TNNLS’21 54.1 86.0 93.0 50.2 – – – – – – – – – – – –

Ours – 60.6 94.4 98.5 60.3 65.5 95.8 98.9 53.8 66.7 99.0 99.8 75.8 74.6 99.7 99.8 69.3

Note: R1, R10 and R20 denote Rank‐1, Rank‐10 and Rank‐20 accuracies (%), respectively. Here, * means the multi‐task learning is used, and ‡ indicates that the attention mechanism
module is added to the backbone network and the mutual learning method is used.
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inter‐identity centre constraint, the distance between cross
modality features is pulled closer and the features with the
same identity become more compact, which validates that the
influence of the modality information is relieved by MCCL.

5 | CONCLUSION

In this paper, we have proposed IGAT and MCCL for cross‐
modality person Re‐ID. The proposed IGAT considers both
local detail and global information to construct completed
correlation between local features. To explicitly overcome the
influence of modality information, we propose MCCL which

TABLE 3 Comparison on RegDB

V‐T T‐V

Methods Venue R1 mAP R1 mAP

Zero‐padding [8] ICCV’17 17.8 18.9 16.7 17.9

TONE [19] AAAI’18 24.4 20.8 21.7 22.2

BDTR [9] IJCAI’18 33.5 31.8 32.7 31.1

MAC [39] MM’19 36.4 37.3 36.2 36.6

D2RL [13] CVPR’19 43.4 44.1 – –

D‐HSME [20] AAAI’19 50.9 47.0 50.2 46.2

AlignGAN [26] ICCV’19 57.9 53.6 56.3 53.4

MSR [40] TIP’20 48.4 48.7 – –

JSIA‐ReID [14] AAAI’20 48.5 49.3 48.1 48.9

Xmodal [16] AAAI’20 62.2 60.2 – –

DDAG [18] ECCV’20 69.3 63.4 68.0 61.8

Hi‐CMD [15] CVPR’20 70.9 66.0 – –

DAPR [41] IVC’21 61.5 59.4 – –

AGW [11] TPAMI’21 70.0 66.4 71.6 65.2

FBP‐AL [50] TNNLS’21 74.0 68.2 70.1 66.6

CMAlign [49] ICCV’21 74.2 67.6 72.4 65.5

NFS [42] CVPR’21 80.5 72.1 78.0 69.8

GLMC* [47] TNNLS’21 91.8 81.4 91.1 81.1

MPANet‡ [48] CVPR’21 83.7 80.9 82.8 80.7

Ours – 84.1 75.4 83.1 76.0

Note: Here, * means the multi‐task learning is used, and ‡ indicates that the attention
mechanism module is added to the backbone network and the mutual learning method
is used.

F I GURE 6 The experimental results with different λ

F I GURE 7 The rank‐1 accuracy with different β1, β2 and β3

F I GURE 8 The mAP with different β1, β2 and β3

TABLE 4 The experimental results with different μ1, μ2 and μ3

μ1 0.01 0.05 0.1 0.2

Rank‐1 (%) 59.7 59.8 60.6 60.2

mAP (%) 59.7 59.8 60.3 60.0

μ2 0.8 0.9 1 1.1

Rank‐1 (%) 57.3 58.8 60.6 60.6

mAP (%) 56.2 57.5 60.3 60.1

μ3 0.3 0.4 0.5 0.6

Rank‐1 (%) 55.2 57.9 60.6 59.5

mAP (%) 54.2 57.4 60.3 60.0
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constrains the centres of modality and identity to optimise the
similarity of features. Extensive experimental results on two
standard datasets have demonstrated the proposed method
surpasses the state‐of‐the‐art methods. Moreover, the pro-
posed method is good at handling heterogeneous data, and
therefore we believe that our method has great potential to
generalise to other related research fields, such as cross‐
modality image retrieval, domain adaptation image classifica-
tion, and so on.
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